ВКЛ / ВЫКЛ: ИЗОБРАЖЕНИЯ: ШРИФТ: A A A ФОН: Ц Ц Ц ЦНАСТРОЙКИ:
Инфофиз
Весь мир в твоих руках, всё будет так, как ты захочешь!
г. Новороссийск
+7 (918) 465-56-36
infofiz.ru@yandex.ru

Инфофиз

Весь мир в твоих руках, всё будет так, как ты захочешь!
МЕНЮ

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными.

Колебания – один из самых распространенных процессов в природе и технике. Крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни, звук - это колебания плотности и давления воздуха, радиоволны - периодические изменения напряженностей электрического и магнитного полей, видимый свет - тоже электромагнитные колебания, только с несколько иными длиной волны и частотой, землетрясения - колебания почвы, биение пульса - периодические сокращения сердечной мышцы человека и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Признаком колебательного движения является его периодичность.

Механические колебания – это движения, которые точно или приблизительно повторяются через одинаковые промежутки времени.

Примерами простых колебательных систем могут служить груз на пружине (пружинный маятник) или шарик на нити (математический маятник).

При механических колебаниях кинетическая и потенциальная энергии периодически изменяются.

При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии.

При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при механических колебаниях остается неизменной.

Для груза на пружине:

В положении максимального отклонения полная энергия мятника равна потенциальной энергии деформированной пружины:

При прохождении положения равновесия полная энергия равна кинетической энергии груза:

Для малых колебаний математического маятника:

В положении максимального отклонения полная энергия мятника равна потенциальной энергии поднятого на высоту h тела:

При прохождении положения равновесия полная энергия равна кинетической энергии тела:

Здесь hm – максимальная высота подъема маятника в поле тяготения Земли, xm и υm = ω0xm – максимальные значения отклонения маятника от положения равновесия и его скорости.

Гармонические колебания и их характеристики. Уравнение гармонического колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением

xxm cos (ωt + φ0).

Здесь x – смещение тела от положения равновесия,
xm – амплитуда колебаний, то есть максимальное смещение от положения равновесия,
ω – циклическая или круговая частота колебаний,
t – время.

Характеристики колебательного движения.

Смещение х – отклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Амплитуда колебаний А – максимальноеотклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Период колебаний T – минимальный интервал времени, за который происходит одно полное колебание, называется. Единица измерения – 1 секунда.

T=t/N

где t - время колебаний, N - количество колебаний, совершенных за это время.

По графику гармоническихколебаний можно определить период и амплитуду колебаний:

Частота колебаний ν – физическая величина, равная числу колебаний за единицу времени.

ν=N/t

Частота – величина, обратная периоду колебаний:

Частота колебаний ν показывает, сколько колебаний совершается за 1 с.Единица частоты – герц (Гц).

Циклическая частота ω – число колебаний за 2π секунды.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:

Фаза гармонического процесса – величина, стоящая под знаком синуса или косинуса в уравнении гармонических колебаний φ = ωt+ φ0. При t = 0 φ = φ0, поэтому φ0 называют начальной фазой.

График гармонических колебаний представляет собой синусоиду или косинусоиду.

Во всех трех случаях для синих кривых φ0 = 0:


красная кривая отличается от синей только большей амплитудой (x'm > xm);


красная кривая отличается от синей только значением периода (T' = T / 2);


красная кривая отличается от синей только значением начальной фазы (рад).

При колебательном движении тела вдоль прямой линии (ось OX) вектор скорости направлен всегда вдоль этой прямой. Скорость движения тела определяется выражением

В математике процедура нахождения предела отношения Δх/Δt при Δt → 0 называется вычислением производной функции x(t) по времени t и обозначается как x'(t).Скорость  равна производной функции х(t) по времени t.

Для гармонического закона движения xxm cos (ωt + φ0) вычисление производной приводит к следующему результату:

υх =x'(t)= ωxm sin (ωt + φ0)

Аналогичным образом определяется ускорение ax тела при гармонических колебаниях. Ускорение a равно производной функции υ(t) по времени t, или второй производной функции x(t). Вычисления дают:

ахх'(t) =x''(t)= -ω2xm cos (ωt + φ0)=-ω2x

Знак минус в этом выражении означает, что ускорение a(t) всегда имеет знак, противоположный знаку смещения x(t), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0).

На рисунке приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Графики координаты x(t), скорости υ(t) и ускорения a(t) тела, совершающего гармонические колебания.

Пружинный маятник.

Пружинным маятником называют груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно.

Собственная частота ω0 свободных колебаний груза на пружине находится по формуле:

Период T гармонических колебаний груза на пружине равен

Значит, период колебаний пружинного маятника зависит от массы груза и от жесткости пружины.

Физические свойства колебательной системы определяют только собственную частоту колебаний ω0 и период T. Такие параметры процесса колебаний, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Математический маятник.

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела.


В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити N. При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести Fτ = –mg sin φ. Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Математический маятник.φ – угловое отклонение маятника от положения равновесия,

x = lφ – смещение маятника по дуге

Собственная частота малых колебаний математического маятника выражается формулой:

Период колебаний математического маятника:

Значит, период колебаний математического маятника зависит отдлины нити и от ускорения свободного падения той местности, где установлен маятник.

Свободные и вынужденные колебания.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными ивынужденными.

Свободные колебания – это колебания, которые возникают  в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

Колебания груза на пружине или колебания маятника являются свободными колебаниями.

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими.

Затухающими называют колебания, амплитуда которых уменьшается со временем.

Чтобы колебания не затухали, необходимо сообщать системе дополнительную энегрию, т.е. воздействовать на колебательную систему периодической силой (например, для раскачивания качели).

Колебания, совершающиеся под воздействием внешней периодически изменяющейся силы, называются вынужденными.

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω0.

Если свободные колебания происходят на частоте ω0, которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы.

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты собственных колебаний с частотой внешней вынуждающей силы называется резонансом.

Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикойили резонансной кривой.

Резонансные кривые при различных уровнях затухания:

1 – колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает;

2, 3, 4 – реальные резонансные кривые для колебательных систем с различным трением.

В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение, тем больше амплитуда вынужденных колебаний при резонансе.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Звук это упругие продольные волны частотой от 20 Гц до 20000 Гц, вызывающие у человека слуховые ощущения.

Источник звука - различные колеблющиеся тела, например туго натянутая струна или тонкая стальная пластина, зажатая с одной стороны.

Как возникают колебательные движения? Достаточно оттянуть и отпустить струну музыкального инструмента или стальную пластину, зажатую одним концом в тисках, как они будут издавать звук. Колебания струны или металлической пластинки передаются окружающему воздуху. Когда пластинка отклонится, например в правую сторону, она уплотняет (сжимает) слои воздуха, прилегающие к ней справа; при этом слой воздуха, прилегающий к пластине с левой стороны, разредится. При отклонении пластины в левую сторону она сжимает слои воздуха слева и разрежает слои воздуха, прилегающие к ней с правой стороны, и т.д. Сжатие и разрежение прилегающих к пластине слоев воздуха будет передаваться соседним слоям. Этот процесс будет периодически повторяться, постепенно ослабевая, до полного прекращения колебаний .

Таким образом колебания струны или пластинки возбуждают колебания окружающего воздуха и, распространяясь, достигают уха человека, заставляя колебаться его барабанную перепонку, вызывая раздражение слухового нерва, воспринимаемое нами как звук.

Скорость распространения звуковых волн в разных средах неодинакова. Она зависит от упругости среды, в которой они распространяются. Медленнее всего звук распространяется в газах. В воздухе скорость распространения звуковых колебаний в среднем равна 330 м/с, однако она может изменяться в зависимости от его влажности, давления и температуры. В безвоздушном пространстве звук не распространяется. В жидкостях звук распространяется быстрее. В твердых телах – еще быстрее. В стальном рельсе, например, звук распространяется со скоростью » 5000 м/с.

При распространении звука в атомы и молекулы колеблются вдоль направления распространения волны, значит звук - продольная волна.

ХАРАКТЕРИСТИКИ ЗВУКА

1. Громкость. Громкость зависит от амплитуды колебаний в звуковой волне. Громкость звука определяется амплитудой волны.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях; 
50 дБ – разговор средней громкости;
70 дБ – шум пишущей машинки;
80 дБ – шум работающего двигателя грузового автомобиля;
120 дБ – шум работающего трактора на расстоянии 1 м
130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

2. Высота тонаВысота звука определяется частотой волны, или частотой колебаний источника звука.

Звуки человеческого голоса по высоте делят на несколько диапазонов:

  • бас – 80–350 Гц,
  • баритон – 110–149 Гц,
  • тенор – 130–520 Гц,
  • дискант – 260–1000 Гц,
  • сопрано – 260–1050 Гц,
  • колоратурное сопрано – до 1400 Гц.

Человеческое ухо способно воспринимать упругие волны с частотой примерно от 16 Гц до 20 кГц. А как мы слыщим?

Слуховой анализатор человека - ухо - состоит их четырех частей:

Наружное ухо

К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

Среднее ухо

Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

Внутреннее ухо

Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

Слуховые проводящие пути

Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд.

Восприятие звука

Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки.
Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение.

В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. Это помогает мозгу в процессе обработки информации о звуке быстрее отличить знакомые звуки от незнакомых. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. С другой стороны, нарушения в работе мозга в результате старения, травмы головы или неврологических болезней и расстройств могут сопровождаться симптомами, похожими на симптомы снижения слуха, например, невнимательность, отрешенность от окружения, неадекватная реакция. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

Животные в качестве звука воспринимают волны иных частот.

Ультразвук продольные волны с частотой превышающей 20 000Гц.

Применение ультразвука.

С помощью гидролокаторов установленных на кораблях измеряют глубину моря, обнаруживают косяки рыб, встречный айсберг или подводную лодку.

Ультразвук используют в промышленности для обнаружения дефектов в изделиях.

В медицине при помощи ультразвука осуществляют сварку костей, обнаруживают опухоли, осуществляют диагностику заболеваний.

Биологическое действие ультразвука позволяет использовать его для стерилизации молока, лекарственных веществ, а также медицинских инструментов.

Совершенные ультразвуковые локаторы имеют летучие мыши и дельфины.

Законы и формулы

© 2024. Дудко Елена | Infofiz.ru 2011-2024 | Сайт носит информационный характер | Все права защищены | Все материалы взяты из открытых источников и представлены исключительно в ознакомительных целях. Все права на статьи, книги, видео и аудио материалы принадлежат их авторам и правообладателям. Любое распространение и/или коммерческое использование без разрешения законных правообладателей не разрешается. .
Яндекс.Метрика