Инфофиз
Весь мир в твоих руках, всё будет так, как ты захочешь!
|
|
---|
Физика для студентов
По электрическим свойствам все вещества разделяют на два больших класса - вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы).
Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле складывается из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.
Проводник - это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.
В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) - ионы.
Диэлектрик - это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.
Рассмотрим подробнее эти классы веществ.
Проводники в электрическом поле.
Проводниками называют вещества, проводящие электрический ток.
Типичными проводниками являются металлы.
Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.
В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.
Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.
Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами.
Индукционные заряды создают свое собственное поле , которое компенсирует внешнее поле во всем объеме проводника:
(внутри проводника).
Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.
Диэлектрики в электрическом поле.
Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.
В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.
При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.
Связанные заряды создают электрическое поле , которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля . Этот процесс называется поляризацией диэлектрика.
Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.
В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля .
Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике , называется диэлектрической проницаемостью вещества.
Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).
При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:
Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля , создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:
Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная - при поляризации твердых диэлектриков.
Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.
Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.
Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.
Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.
Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
В системе СИ единица электроемкости называется фарад [Ф]:
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.
Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.
Простейший конденсатор – плоский конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.
Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.
В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.
Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними.
Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:
Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.
Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.
Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.
Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:
- сферический конденсатор
- цилиндрический конденсатор
Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.
1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.
Напряжения на конденсаторах одинаковы U1 = U2 = U, заряды равны q1 = С1U и q2 = С2U.
Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует или С = С1 + С2
Таким образом, при параллельном соединении электроемкости складываются.
2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки
Заряды обоих конденсаторов одинаковы q1 = q2 = q, напряжения на них равны и
Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2.
Следовательно, или
При последовательном соединении конденсаторов складываются обратные величины емкостей.
Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.
Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи
при параллельном соединении Собщ = nС
при последовательном соединении Собщ = С/n
Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.
Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.
Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов
при переносе каждой порции Δq внешние силы должны совершить работу
Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:
Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением q = CU.
Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.
По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.
Проводники отличаются от диэлектриков тем, что в них есть свободные заряды, которые могут перемещаться по всему объему проводника.
Если изолированный проводник поместить в электрическое поле , то на свободные заряды qв проводнике будет действовать сила . В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, не скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника равно нулю.
Однако, в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током.
Электрический ток – упорядоченное движение заряженных частиц.
За направление электрического тока принято направление движения положительных свободных зарядов.
В металлах носителями зарядов являются электроны - отрицательно заряженные частицы, поэтому электрический ток в металлах всегда направлен против дижения электронов.
Количественной мерой электрического тока служит сила тока I.
Сила тока – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:
Сила тока численно равна количеству зарядов, прошедших через поперечное сечение проводника за 1 секунду.
Упорядоченное движение электронов в металлическом проводнике
I - сила тока, S – площадь поперечного сечения проводника, – электрическое поле.
Единица измерения силы тока в Международной системе единиц СИ ампер [А].
Прибор для измерения силы тока называется амперметр.
Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток.
На схемах электрических цепей амперметр обозначается .
Амперметр обладает некоторым внутренним сопротивлением RA. Внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.
Если сила тока и его направление не изменяются со временем, то такой ток называетсяпостоянным.
Кратковременный ток в проводнике можно получить, если соединить этим проводником два заряженных проводящих тела, которые имеют различный потенциал. Ток в проводнике исчезнет, когда потенциал тел станет одинаковым. Для существования электрического тока в проводнике необходимо создать в нем и длительное время поддерживать электрическое поле.
Условия существования электического тока:
1. Наличие свободных зарядов внутри проводника,
2. Наличие разности потенциалов на концах проводника (создание электрического поля внутри проводника)
Электрический ток – это упорядоченное движение заряженных частиц, которое создается электрическим полём, а оно при этом совершает работу. Работа тока – это работа сил электрического поля, создающего электрический ток.
Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. При перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы.
Работа электростатических сил при перемещении единичного заряда равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Величину U12 принято называть напряжением на участке цепи 1–2.
Напряжение – это физическая величина, характеризующая действие электрического поля на заряженные частицы, численно равно работе электрического поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2.
В случае однородного участка напряжение равно разности потенциалов: U12 = φ1 – φ2
Единица измерения напряжения в Международной системе единиц СИ вольт [В].
Прибор для измерения напряжения называется вольтметр.
Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.
На схемах электрических цепей амперметр обозначается .
Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.
Аналогично тому, как трение в механике препятствует движению, сопротивление проводника создает противодействие направленному движению зарядов и определяет превращение электрической энергии во внутреннюю энергию проводника. Причина сопротивления: столкновение свободно движущихся зарядов с ионами кристаллической решетки.
Величина, характеризующая противодействие электрическому току в проводнике, которое обусловлено внутренним строением проводника и хаотическим движением его частиц, называется электрическим сопротивлением проводника.
В СИ единицей электрического сопротивления проводников служит ом [Ом]. Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Электрическое сопротивление проводника зависит от размеров и формы проводника и от материала, из которого изготовлен проводник.
S – площадь поперечного сечения проводника
l – длина проводника
ρ – удельное сопротивление проводника.
Сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения.
Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением проводника. Оно численно равно сопротивлению проводника длиной 1 м и площадью сечения 1 мм2 , изготовленного из данного вещества. Единица удельного сопротивления в СИ [1 Ом*м = 1 Ом*мм2/м]
Сопротивление проводника зависит и от его состояния, а именно от температуры.
Эта зависимость выражается формулой или
α – температурный коэффициент сопротивления. Для всех чистых металлов .
При нагревании чистых металлов их сопротивление увеличивается, а при охлаждении – уменьшается.
Закон Ома для участка цепи.
Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:
Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
Проводник, обладающий электрическим сопротивлением, называется резистором.
Проводники, подчиняющиеся закону Ома, называются линейными.
Графическая зависимость силы тока I от напряжения U называется вольт-амперная характеристика (сокращенно ВАХ). Она изображается прямой линией, проходящей через начало координат.
По вольт-амперной характеристике проводника можно судить о его сопротивлении: чем больше угол наклона графика к оси напряжения, тем меньше сопротивление проводника.
Начало лекции 28 ЭДС источника. Соединения проводников и источников.
Проводники в электрических цепях тоже могут соединяться последовательно и параллельно.
1. При последовательном соединении проводников
1. Сила тока во всех проводниках одинакова:
I1 = I2 = I
2. Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2 на каждом проводнике:
U = U1 + U2
3. По закону Ома, напряжения U1 и U2 на проводниках равны U1 = IR1, U2 = IR2 а общее напряжение U = IR где R – электрическое сопротивление всей цепи, тогда IR = IR1 + IR2.Отсюда следует
R = R1 + R2
При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.
Этот результат справедлив для любого числа последовательно соединенных проводников.
2. При параллельном соединении проводников
1. Напряжения U1 и U2 на обоих проводниках одинаковы
U1 = U2 = U
2. Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:
I = I1 + I2
Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно, I = I1 + I2.
3. Записывая на основании закона Ома
где R – электрическое сопротивление всей цепи, получим
или
При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Этот результат справедлив для любого числа параллельно включенных проводников.
Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рисунке приведен пример такой сложной цепи и указана последовательность вычислений. Сопротивления всех проводников указаны в омах (Ом).
На пракутике одного источника тока в цепи бывает недостаточно, и тогда источники тока тоже соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.
При последовательном соединении два соседних источника соединяются разноименными полюсами.
Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.
Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.
1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε1 + ε2 + ε3
2. Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников rбатареи= r1 + r2 + r3
Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε1, а сопротивление rбатареи= nr1
3. Сила тока в такой цепи по закону Ома
При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.
Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).
Параллельно соединяют только источники с одинаковой ЭДС. Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.
1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε1= ε2 = ε3
2. Сопротивление батареи меньше, чем сопротивление одного источника rбатареи= r1/n
3. Сила тока в такой цепи по закону Ома
Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы - параллельно или последовательно.
Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.
Кратковременный ток в проводнике можно получить, если соединить этим проводником два заряженных проводящих тела, которые имеют различный потенциал. Ток в проводнике исчезнет, когда потенциал тел станет одинаковым. Для существования электрического тока в проводнике необходимо создать в нем и длительное время поддерживать электрическое поле.
Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. При перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Поле внутри проводников, составляющих замкнутую цепь должен поддерживать источник электрической энергии.
Устройства, способные создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. называются источниками постоянного тока.
Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.
Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.
В цепь включают также потребители электрической энергии, в которых ток выполняет полезную работу. Кроме того, в цепь включают соединительные провода и выключатель (рубильник) для замыкания и размыкания цепи. Простая электрическая цепь состоит из источника тока, потребителя, подводящих проводов и выключателя.
Цепь постоянного тока можно разбить на определенные участки. Те участки, на которых не действуют сторонние силы (то есть участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.
На рисунке изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.
Часть цепи, в которой заряды движутся по направлению действия электрических сил (a-d-c-b)называют внешней, а часть цепи, в которой заряды движутся в сторону действия сторонних сил (a-b), называют внутренней.
Те точки, в которых внешняя цепь граничит с внутренней называют полюсами. У одного из полюсов имеется самый большой потенциал, а у другого самый маленький потенциал по сравнению с другими точками цепи. Полюс с наибольшим потенциалом называют положительным и обозначают знаком «+», а полюс с наименьшим потенциалом называют отрицательным и обозначают знаком «-».
При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы.
Для существования постоянного тока необходимо наличие в электрической цепи источника постоянного тока - устройства, способного создавать и поддерживать разности потенциалов на участках цепи. Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами. При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.
Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.
Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].
Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи.
Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источникаи обозначают r.
При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.
Работа сторонних сил по перемещению единичного заряда равна по определению электродвижущей силе ε12, действующей на данном участке. Поэтому полная работа по перемещению единичного заряда равна
Величину U12 , равную работе по перемещению единичного заряда, принято называть напряжением на участке цепи 1–2.
Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir - напряжение на внутреннем участке цепи.
Таким образом, для участка цепи, содержащего ЭДС:
Эта формула выражает закон Ома для полной цепи: сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.
На рисунке изображена замкнутая цепь постоянного тока.
Теория по теме: Лекция 29. Работа и мощность электрического тока. Закон Джоуля – Ленца.
Материал находится в разработке
Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, на и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.
Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна
Во внешней цепи выделяется мощность
Отношение равное называется коэффициентом полезного действия источника.